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ABSTRACT 

This paper reviews the problem of translating signals into sym-
bols preserving maximally the information contained in the signal
time structure. In this context, we motivate the use of nonconver-
gent dynamics for the signal to symbol translator. We then
describe a biologically realistic model of the olfactory system pro-
posed by Walter Freeman that has locally stable dynamics but is
globally chaotic. We present results of simulations and measure-
ments obtained from a fabricated analog VLSI chip. 

1. INTRODUCTION

1. Introduction

There are many important differences between biological
and man-made information processing systems. Animals have
goal driven behavior and have explored inductive principles
throughout the course of evolution to work reliably in a nonGaus-
sian, nonstationary, nonlinear world. Autonomous man-made sys-
tems with sensors and computational algorithms (animats) are still
unable to match these capabilities. The processing device that
transforms signals into symbols is called here the signal-to-sym-
bols translator (SΣT). We can specify an optimal SΣT as a device
that is able to capture the goal-relevant information contained in
the signal time structure and map it with as little excess irrelevant
information as possible to a stable representation in the animat’s
computational framework. 

A framework where the SΣTs is modeled as a dynamical sys-
tem coupled to the external world seems a productive alternative.
We will center the discussion in distributed, adaptive arrange-
ments of nonlinear processing elements (PEs) called coupled lat-
tices [3]. In neurocomputing content addressable memories
(CAMs), both static or dynamic (Hopfield networks) with fixed
points have been proposed and shown useful. However, we are
slowly realizing that the limited repertoire of dynamical behavior
(fixed points) implemented by the DCAMs constrain their use as
information processing devices for signals that carry information
in their time structure. For instance, the point attractor has no
dynamical memory (i.e. the system forgets all previous inputs
when it reaches the fixed point); while the dynamic memory of
the limit cycle is constrained to the period; only chaotic systems
display long term dynamic memory due to the sensitivity to initial
conditions. This sensitivity carries the problem of susceptibility to
noise, but a possible solution is to utilize a chaotic attractor cre-

ated by a dynamical system with singularities of at least second
order (third order ODE). A chaotic attractor is still a stable repre-
sentation, might exist in a high dimensional space (much higher
than the dimensionality of our 3D world), and more importantly
its dimensionality can be controlled by parameters of the SΣTs.
Forseeably such systems are capable of using the inner structure
of trajectories within the attractor for very high information stor-
age and rapid recall, but we still do not fully understand how to
control the stability of recall in particular in the presence of noise.

Our aim is to construct a SΣT that operates in accordance
with the neurodynamics of the cerebral cortex, and that has the
sensitivity, selectivity, adaptiveness, speed, and tolerance of noise
that characterizes human sensation. We will be using a model of
the rabbit olfactory cortex proposed by Walter Freeman to
develop and implement an analog VLSI version of a biologically
realistic SΣT [1]. The core of the model is the KII network. 

2. MESOSCOPIC DYNAMICS: A QUICK 
OVERVIEW

We will be modeling brain dynamics at the level of million of
cells, which is called the mesoscopic level [2]. The advantage of
the mesoscopic level is that it is able to describe interactions
among sufficient large populations of cells that are relevant to
probe information processing. Action potentials limit the model-
ing to relatively small number of cells, while the electroencepha-
logram describes too global interactions. 
Our unit of processing will be called a processing element (PE).
PEs are modular and formal representations of populations of
neurons in the mammalian brain. The representation of responses
is done by means of density functions that measure the pulse to
wave conversion, e.g. from a firing pulse density of a set of neu-
rons to the current density and back to a pulse density. Hence, the
functions are continuous in time, magnitude and space. From bio-
logical evidence Freeman as proposed the following K0 structure
[1] shown in figure 1 to represent a population of neurons.

Figure 1.- K0 model diagram (excitatory).

The K0 PE comprises a summing input node where the spacial
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by (1). The output signal is the result of a pulse to wave density
conversion function. This signal is then reconverted into a pulse
density signal by means of a non-symmetric non-linear function
represented also in figure 1. This is the wave to pulse conversion
phase and, in terms of densities, is functionally represented by (2).
Figure 2 shows the non-linearity for different ‘q’ values.

   (1)

 (2)

Figure 2.- Non-symmetric non-linearity function (eq.
(2)).

Figure 3.- KII PE representation (each square represents
a K0 of figure 1).

The K0 is the building block of an hierarchical family that models
different types of anatomical connections. For instance, in the
olfactory system of the rabbit, the K0 network models the periglo-
mular layer (only excitatory cells). The KII is a special arrange-
ment of K0s forming a multi-input multi-output (MIMO)
network. The arrangement mimics biological evidence and is
shown in figure 3. The (+) and (-) signs describe excitatory and
inhibitory connections. The inhibitory K0 is simply obtained by
negating the output of figure 1 (flipping the sigmoidal non-linear-
ity over the x axis). Under correct parameter sets, defined as inter-
connection gains, the KII PE behaves as an oscillator controlled
by the input. It is zero for zero input and oscillates if the input (an
external signal shown in figure 3) amplitude rises.The KII net-

work is a lattice of KII PEs that models the olfactory cortex. The
excitatory connections among KII PEs are modulated by Hebbian
learning, while the negative connections among KII PEs are fixed.
Functionally speaking, the KII network is an associative memory,
creating a mapping from input patterns to a distinctive spatio tem-
poral pattern of activity for each input over the coupled lattice. 

The olfactory cortex is a hierarchical arrangement of KII net-
works, tightly coupled by dispersive delays. In our KIII, we
model the olfactory bulb (OB), the anterior olfactory nucleus
(AON), the prepiriform cortex (PC), and the entorhinal cortex
(EC). Since the individual KII oscillators in each of these cortical
areas have different intrinsic oscillating frequencies and are
tightly coupled by delays connections, the KIII network displays
nonconvergent (chaotic) dynamics. Hence, it is locally stable but
globally unstable. With no input, the KIII model lies in a high
dimensional chaotic state. Once it is activated, the system dynam-
ics quickly collapse to a lower dimensional attractor (an “attractor
wing”) where the input is recognized. When the input is taken out,
the system state returns to the high dimensional chaotic regime,
waiting for a new input. The information processing characteris-
tics of this design have not been thoroughly investigated yet. 

3. ANALOG VLSI CIRCUIT IMPLEMEN-
TATION

The formulation of the cell assembly’s behavior in terms of non-
linear dynamics opens the door to analog VLSI simulations. This
is one of the advantages of the nonlinear dynamics framework for
neuroengineering. It enables direct translation of brain computa-
tional principles into engineering systems, even when we do not
truly understand the purposes of the processing. Conversely, it
enables us to simulate brain processes in both analog and digital
computers, helping us derive and check mathematical hypothesis
that furthers our understand of the brain. 
We will not present in this paper the design of the analog VLSI
components that were developed to implement the K0 PE. Please
consult the following papers [5],[6]. We will only briefly address
the design principles that were utilized and present results of our
chips. Designing VLSI chips to mimic brain function is a formi-
dable problem basically for three reasons: power consumption,
size of the components and the massive interconnect. We utilized
analog VLSI in subthreshold regimes to decrease the power con-
sumption and the size. We utilized hybrid (analog amplitude/
discrete time) components to fully utilize the power of analog
computation (time is a free parameter for the computational algo-
rithms), while enabling us to multiplex signals and save real state
for the interconnect. 
In order to implement a K0 PE one needs to design an adder, a
second order dynamic element (a lowpass filter with specified
time constants), and a nonsymmetric static nonlinearity. Once this
is accomplished, the KII is an arrangement of K0 and the KIII is
an arrangement of KII connected by dispersive delays. The KII
setup for our tests is shown in figure 4, with table I summarizing
the parameter values. The results from an actual VLSI implemen-
tation are plotted in figures 5 and 6. As expected the KII behaves
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as an oscillator controlled by the input. The waveform phases
measured at different points of the KII follow closely the digital
simulations.
.

Figure 4.- KII schematic (RF and Rij; j,i=E or I, corre-

spond to Rsk; k=1,..,n in figure 7, respectively).

Figure 5.- Measured KII oscillatory behavior with the
input.

Figure 6.-Measured KII phase plot showing a complete
cycle correspondent to figure 11. All K0 cells in figure 10
oscillate at the same frequency but out of phase.

As can be seen in figure 6, the state of a KII PE has two sta-
ble regimes: a fixed point at the origin, and a limit cycle.
The transition between these two points is controlled by the
input. This attractor has been called a Shilkonov attractor.
When a 20 bit input stream is presented to a KII network,
and the excitatory connections are modified with Hebbian
learning the OB PEs display oscillations of different ampli-
tudes, coding “1” as high amplitude, and “0” as low ampli-
tude oscillations as shown in Figure 7.

Figure 7. Oscillatory patterns over a 20 PE OB layer. 
Channels that have a high amplitude codify “1” in the 
input pattern.

We still do not have chip simulations for the KIII network.
Our simulation of the dynamics using digital signal pro-
cessing techniques [4], show that in fact the KIII model has
nonconvergent dynamics, possibly chaotic [4]. Instead of
sinusoids of different amplitudes, signals have a much
more complex time structure, but are still modulated in the
same way (i.e. KII PEs that codify “1” have higher ampli-
tude). Figure 8 shows phase plots of a KIII network simula-
tion taken at different points in the hierarchy. We see

Table 1: KII Interconnections gain

Gain Value
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trajectories that are compatible with a chaotic attractor, as
discussed by Freeman [7]. 

Figure 8. Phase plots at different levels of the KIII 
hierarchical model of the olfactory cortex without an 
input, simulated in a digital computer. The plots are 
compatible with a chaotic attractor. 

4. CONCLUSION

This paper starts by posing the important question of how to trans-
late signals into symbols preserving maximally the information in
the signal time structure. From biological studies, it seems that the
brain of mammals solves the problem by coupling the sensory
inputs to locally stable but globally unstable dynamical lattices of
rather simple nonlinear dynamical processing elements.The lan-
guage of dynamics helps us simulate and implement in analog
VLSI circuits with similar dynamics. Hence, this opens up the
possibility of creating brain dynamics in chips that can be used to
create animats which may display the same sensitivity, selectivity,
adaptiveness, speed, and tolerance to noise that characterizes
human sensation.
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